
Coupled-channel scattering and separation of coupled differential equations by generalized

Darboux transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 L89

(http://iopscience.iop.org/0305-4470/26/3/004)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 26 (1993) L89-L92. F’rinted in the UK 

LElTER TO THE EDITOR 

Coupled-channel scattering and separation of coupled 
differential ’equations by generalized Darboux transformations 

F Cannatat and M V IoffeS 
i Dipadmento di Fisica and INFN, Via lmerio 46, 40126 Bologna, Italy 
i Department of ‘Theoretical Physics, University of St Petenburg, 198904 St Petenburg, 
Russia 

Received 9 November 1992 

Abstracf. General methods for separation of coupled differential equations are applied in 
coupled-channel scattering theory with appropriate asymptotic conditions. It is shown that 
the problems with thresholds cannot be separated. Finally it is pointed out that separation 
of the coupled-channel s-wave problem without thresholds can be realized by the use of 
generalized Darboux transformations. 

Recently there have been extensive studies of separation of coupled systems ofdifferen- 
tial equations (Hnmi 1985, Cao 1992 and references therein, Cannata and Ioffe 1992). 
Cannata and Ioffe (1992) had specifically the aim of discussing coupled-channel 
scattering theory. Here we want to generalize the results obtained previously, we point 
out the connections between Humi (1985), Cao (1992) and Cannata and Ioffe (1992) 
and discuss the difference between the cases with thresholds (Amado etal1988a) (also 
referred to as non-resonant (Cao 1992)) and the ones without thresholds (Amado et 
al 1988b, Cannata and Ioffe 1992) (also referred to as resonant (Humi 1985)). The 
distinction between these two cases stems from the necessity of imposing proper 
boundary conditions at infinity and can be formulated in a rather general framework 
which allows for higher-order (higher-derivative) Darboux transformations (Infeld 
and Hull 1951, Amado er al 1990, Andrianov et R I  1993). 

For simplicity we shall restrict ourselves to two coupled channels and describe the 
radial s-wave equations corresponding to a quantum mechanical off-diagonal 
Hamiltonian: 

e ” O ” h ( r )  = (-2uo+uo . no(r) + U, . n,(r)+u3 . n 3 ( r ) ) h ( r )  = E .  +E(r) (1) 
where is a two component column, U (the Pauli matrices) are defined as: 

uo=( 1 0  ) u,=(o ‘j q=(’ o j  
0 1  1 0  0 -1 

and n(r)  are real functions ( O S  r C m ) .  The term like uz. nz(r) ,  with 

is excluded if we require (Hermiticity) that n, is real and the potential matrix should 
be real. We shall assume that n, + O  for m o o .  A priori we allow no, n3 to approach 
constant values c, and c, at infinity. If in particular eo, c, -f 0 we obtain the no-threshold 
(resonant) case. 
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The solution to the problem will be searched for in terms of solutions of a system 
of equations which is separated (decoupled) 

X D $ € ( r )  = (-8uo+uo. mo(r)+ U $ .  m)(r) )$€(r )  = E$€(r)  (2) 
where the equivalence of equation (1) and equation (2) is given by the fact that, with 
exception of a restricted number of states, we require 

Q$E = +E. (3) 

Q = C A.(r)a" 

Q is a differential operator (Anderson and Camporesi 1990, Anderson 1991) like: 

n 

where A.(r)  are matrix-valued functions and the sum can be truncated to n =0, 1,2, 
etc, giving thereby rise to various matrix differential operators already discussed in 
the literature. 

The equivalence of POD and %OD can also be expressed by the well known inter- 
twining relations 

Q%' = P D Q .  (4) 

In the context of scattering theory PD and XD are identical at infinity ( n ,  +O for 
r-t 00). Then the intertwining relation (4) at infinity implies that in presence of thresholds 
(see, however, the remark later on) 

Qm = a (r ,  J)uo + P ( I ,  Jh3. 
When there are no thresholds there is no such restriction on Qm. 

ing the action of Qm on asymptotic states (Amado et a1 1988a): 
A physical interpretation of this algebraic result can easily be obtained by consider- 

with E = G + c o +  cg = k:+ CO- c,. 
If we require 

Om$;= 4; 
with 

or 

it is clear that f& has to he diagonal in the presence of thresholds ( k ,  # k,) in order 
to preserve the correct structure of the exponentials. 

The importance of the previous result is made apparent by the fact that if we search 
in general (irrespectively of thresholds) for the linear combination of $: and $7 which 
leads (when acted by Qm) to &: or 4? we find that a solution with off diagonal SOD 
is possible only for Qm off-diagonal (see, e.g. equation (14) of Cannata and Ioffe 1992). 
We thus conclude that theproblem of coupledchannels with thresholds cannot be separated 
and from now on we will restrict ourselves toproblem without thresholds (resonant case). 
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The problem of separation of coupled-channel scattering amounts to finding XD 
and Q starting from a given %?. The search for Q has been the subject of previous 
investigations (Humi 1985, Cao 1992) which, however, did not focus attention on the 
appropriate asymptotic conditions relevant for scattering. From the previous consider- 
ations it is clear that for the scattering problem only an off-diagonal Q, can be accepted. 

While the previous considerations have not made use of any explicit form for Q 
from now on we will discuss explicit realizations given in the literature. We only briefly 
mention the case which can be diagonalized by a constant matrix A (no(r)  # 0; nl(r) # 
0, n3(r) =0) (London 1932). 

The classical expression for Q is the well known Darboux transformation: 

Q(r, d )  = A(r )  + Bd (5) 
where A( r) and B (independent of r )  are in general 2 x 2 matrices. 

Humi (1985) has studied the case B = uo and Cannata and Ioffe (1992) B = U,  + u3. 
The connection between these two treatments is obtained by multiplying Q by a 
constant unitary matrix T (Andrianov et al 1992). The intertwining relations (4) yield 

Since the operator T%?T-' can be interpreted as the operator FD after a change 
of basis we can interpret TQ to be the new operator which satisfies equations (3) and 
(4). It is clear that if the transformation matrix is taken as T = $(U, + u3) we realize 
the equivalence between the two choices provided TQ, is still off-diagonal. 

In explicit realizations the matrix Q of equation (5) depends on the functions n ( r )  
of equation (1). 

In particular in Cannata and Ioffe (1992) the parametrization of A (equation (5)) 
dictated by the form of B =  u,+u3 and by the requirement of separation is 

TQXD = ZA?T-' TQ. 

'=( w-Q -w+'p+iD'/Q) W-Q'/'p 

where W and 'p are arbitrary functions to be expressed in terms of no. n , ,  n3 of 
equation (1). 

One can easily obtain 

Q = f l ' n d r ) d r  

with c an arbitrary constant. The necessary compatibility condition in the sense 
discussed by Humi (1985) and Cao (1992) is 

Next in order of complexity is the ansatz: 
Q"(r, d )  = A(r )  + D(r)J+ J2 

= no( r) . uo+ a(r)  . u + bo( r )  . u0a+ b( r )  . ua+d2.  (6) 

(7) 

A reparametrization of (6) can be obtained by the factorization: 

Q"( V,  W) =(a+ V(r ) ) (J+  W(r)) 



L92 Letter to the Editor 

where V ( r )  and W ( r )  are arbitrary matrix-valued functions. The connection between 
the two parametrizations is given in terms of a matrix Riccati equation: 

( w - f ~ ) ~ - (  w - ~ D ) '  - f p - f p + ~  = 0 

V =  D -  W. 

We would like to stress that in order to avoid extensions which are trivial for our 
separation purposes we have to show that such Q" cannot, in general, be reproduced 
multiplying a 6rst-order differential operator like in equation (5) by a similar diagonal 
operator. We therefore study the conditions for such trivial extension Q:Avial; 

Q:Avw = (J+ V(r))(J + W'"(r)) 

with 

~ " ( ~ ) = w ~ ( r ) . ~ ~ + w ~ ( r ) . u ~  

and 

V( r )  = uo( r )  . uo + u( r )  9 U. 

The equality of (6) and (8) leads to the following conditions: 

(U,* U$+ ( 0 0  * ~ 3 ) ' -  ( O o i  us)(bo * bJ - (bo* bJ+ (a05 U,) = 0 

(h &)(UO) - - ( b o ~ l + i b 3 b 2 - ~ l )  

(9) 

where uo and v3 should be written as..solutions of the linear equations: 

b2 -ib, U, bob2-iblb3-a2 

and U, and u2 can be expressed in terms of these functions. Equation (9), as a constraint 
imposed on the parameters a and b, expresses the condition for triviality. 

The results support the view that the ansatz (6) is in general not a trivial extension 
of ( 5 ) .  The generalization of our algebraic results to the N x  N case seems rather 
straightforward. 
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